25 research outputs found

    Constraints on Dark Energy Models Including Gamma Ray Bursts

    Get PDF
    In this paper we analyze the constraints on the property of dark energy from cosmological observations. Together with SNe Ia Gold sample, WMAP, SDSS and 2dFGRS data, we include 69 long Gamma-Ray Bursts (GRBs) data in our study and perform global fitting using Markov Chain Monte Carlo (MCMC) technique. Dark energy perturbations are explicitly considered. We pay particular attention to the time evolution of the equation of state of dark energy parameterized as wDE=w0+wa(1a)w_{DE}=w_0+w_a(1-a) with aa the scale factor of the universe, emphasizing the complementarity of high redshift GRBs to other cosmological probes. It is found that the constraints on dark energy become stringent by taking into account high redshift GRBs, especially for waw_a, which delineates the evolution of dark energy.Comment: 7 pages and 3 figures. Replaced with version accepted for publication in Phys. Lett.

    An Intermediate-field Fast Radio Burst Model and the Quasi-periodic Oscillation

    Full text link
    Quasi-periodic oscillation (QPO) signals are discovered in some fast radio bursts (FRBs) such as FRB 20191221A, as well as in the X-ray burst associated with the galactic FRB from SGR 1935+2154. We revisit the intermediate-field FRB model where the radio waves are generated as fast-magnetosonic waves through magnetic reconnection near the light cylinder. The current sheet in the magnetar wind is compressed by a low frequency pulse emitted from the inner magnetosphere to trigger magnetic reconnection. By incorporating the wave dynamics of the magnetosphere, we demonstrate how the FRB frequency, the single pulse width, and luminosity are determined by the period, magnetic field, QPO frequency and quake energetics of the magnetar. We find that this model can naturally and self-consistently interpret the X-ray/radio event from SGR 1935+2154 and the QPO in FRB 20191221A. It can also explain the observed wide energy range of repeating FRBs in a narrow bandwidth.Comment: 10 pages, 1 figure, accepted to RAA, Figure 1 is updated with a clearer description of the mode

    Sub-second periodic radio oscillations in a microquasar

    Full text link
    Powerful relativistic jets are one of the ubiquitous features of accreting black holes in all scales. GRS 1915+105 is a well-known fast-spinning black-hole X-ray binary with a relativistic jet, termed as a ``microquasar'', as indicated by its superluminal motion of radio emission. It exhibits persistent x-ray activity over the last 30 years, with quasi-periodic oscillations of 110\sim 1-10 Hz and 34 and 67 Hz in the x-ray band. These oscillations likely originate in the inner accretion disk, but other origins have been considered. Radio observations found variable light curves with quasi-periodic flares or oscillations with periods of 2050\sim 20-50 minutes. Here we report two instances of \sim5 Hz transient periodic oscillation features from the source detected in the 1.05-1.45 GHz radio band that occurred in January 2021 and June 2022, respectively. Circular polarization was also observed during the oscillation phase.Comment: The author version of the article which will appear in Nature on 26 July 2023, 32 pages including the extended data. The online publication version can be found at the following URL: https://www.nature.com/articles/s41586-023-06336-

    Prompt-to-afterglow transition of optical emission in a long gamma-ray burst consistent with a fireball

    Full text link
    Long gamma-ray bursts (GRBs), which signify the end-life collapsing of very massive stars, are produced by extremely relativistic jets colliding into circumstellar medium. Huge energy is released both in the first few seconds, namely the internal dissipation phase that powers prompt emissions, and in the subsequent self-similar jet-deceleration phase that produces afterglows observed in broad-band electromagnetic spectrum. However, prompt optical emissions of GRBs have been rarely detected, seriously limiting our understanding of the transition between the two phases. Here we report detection of prompt optical emissions from a gamma-ray burst (i.e. GRB 201223A) using a dedicated telescope array with a high temporal resolution and a wide time coverage. The early phase coincident with prompt {\gamma}-ray emissions show a luminosity in great excess with respect to the extrapolation of {\gamma}-rays, while the later luminosity bump is consistent with onset of the afterglow. The clearly detected transition allows us to differentiate physical processes contributing to early optical emissions and to diagnose the composition of the jetComment: Authors' version of article published in Nature Astronomy, see their website for official versio

    Atypical radio pulsations from magnetar SGR 1935+2154

    Full text link
    Magnetars are neutron stars with extremely strong magnetic fields, frequently powering high-energy activity in X-rays. Pulsed radio emission following some X-ray outbursts have been detected, albeit its physical origin is unclear. It has long been speculated that the origin of magnetars' radio signals is different from those from canonical pulsars, although convincing evidence is still lacking. Five months after magnetar SGR 1935+2154's X-ray outburst and its associated Fast Radio Burst (FRB) 20200428, a radio pulsar phase was discovered. Here we report the discovery of X-ray spectral hardening associated with the emergence of periodic radio pulsations from SGR 1935+2154 and a detailed analysis of the properties of the radio pulses. The complex radio pulse morphology, which contains both narrow-band emission and frequency drifts, has not been seen before in other magnetars, but is similar to those of repeating FRBs - even though the luminosities are many orders of magnitude different. The observations suggest that radio emission originates from the outer magnetosphere of the magnetar, and the surface heating due to the bombardment of inward-going particles from the radio emission region is responsible for the observed X-ray spectral hardening.Comment: 47 pages, 11 figure

    Sciences for The 2.5-meter Wide Field Survey Telescope (WFST)

    Full text link
    The Wide Field Survey Telescope (WFST) is a dedicated photometric survey facility under construction jointly by the University of Science and Technology of China and Purple Mountain Observatory. It is equipped with a primary mirror of 2.5m in diameter, an active optical system, and a mosaic CCD camera of 0.73 Gpix on the main focus plane to achieve high-quality imaging over a field of view of 6.5 square degrees. The installation of WFST in the Lenghu observing site is planned to happen in the summer of 2023, and the operation is scheduled to commence within three months afterward. WFST will scan the northern sky in four optical bands (u, g, r, and i) at cadences from hourly/daily to semi-weekly in the deep high-cadence survey (DHS) and the wide field survey (WFS) programs, respectively. WFS reaches a depth of 22.27, 23.32, 22.84, and 22.31 in AB magnitudes in a nominal 30-second exposure in the four bands during a photometric night, respectively, enabling us to search tremendous amount of transients in the low-z universe and systematically investigate the variability of Galactic and extragalactic objects. Intranight 90s exposures as deep as 23 and 24 mag in u and g bands via DHS provide a unique opportunity to facilitate explorations of energetic transients in demand for high sensitivity, including the electromagnetic counterparts of gravitational-wave events detected by the second/third-generation GW detectors, supernovae within a few hours of their explosions, tidal disruption events and luminous fast optical transients even beyond a redshift of 1. Meanwhile, the final 6-year co-added images, anticipated to reach g about 25.5 mag in WFS or even deeper by 1.5 mag in DHS, will be of significant value to general Galactic and extragalactic sciences. The highly uniform legacy surveys of WFST will also serve as an indispensable complement to those of LSST which monitors the southern sky.Comment: 46 pages, submitted to SCMP
    corecore